For the most recent list of our publications, please visit Prof. Shell’s Google Scholar page.

Journal Articles

  1. K. Shen, M. Nguyen, N. Sherck, B. Yoo, S. Köhler, J. Speros, K. T. Delaney , M.S. Shell, G. H. Fredrickson, “Predicting surfactant phase behavior with a molecularly informed field theory”, J. Colloid Interface Sci. 638, 84-98. (2023)
    https://doi.org/10.1016/j.jcis.2023.01.015
  2. S. Jiao, L.E. Katz, and M.S. Shell, “Inverse Design of Pore Wall Chemistry To Control Solute Transport and Selectivity”, ACS Cent. Sci. 8, 12, 1609–1617. (2022)
    https://doi.org/10.1021/acscentsci.2c01011
  3. M. Nguyen, N. Sherck, K. Shen, C.E.R. Edwards, B. Yoo, S. Köhler, J.C. Speros, M.E. Helgeson, K.T. Delaney, M.S. Shell, and G. H. Fredrickson, “Predicting Polyelectrolyte Coacervation from a Molecularly Informed Field-Theoretic Model”, Macromolecules. 55, 21, 9868–9879. (2022)
    https://doi.org/10.1021/acs.macromol.2c01759
  4. S. Jiao, D.M. Rivera Mirabal, A.J. DeStefano, R.A. Segalman, S. Han, M.S. Shell, “Sequence Modulates Polypeptoid Hydration Water Structure and Dynamics”, Biomacromolecules.  23, 4, 1745–1756. (2022).
    https://doi.org/10.1021/acs.biomac.1c01687
  5. H. Moon, R. P. Collanton, J. I. Monroe, T. M. Casey, M. S. Shell, S. Han, S. L. Scott, “Evidence for Entropically Controlled Interfacial Hydration in Mesoporous Organosilicas”, J. Am. Chem. Soc. 144, 4, 1766–1777. (2022).
    https://doi.org/10.1021/jacs.1c11342
  6. E. Pretti, M. S. Shell, “A microcanonical approach to temperature-transferable coarse-grained models using the relative entropy”, J. Chem. Phys. 155, 094102 (2021).
    https://doi.org/10.1063/5.0057104
  7. S. Jiao, A. DeStefano, J. I. Monroe, M. Barry, N. Sherck, T. Casey, R. A. Segalman, S. Han, M. S. Shell, “Quantifying Polypeptoid Conformational Landscapes through Integrated Experiment and Simulation”, Macromolecules. 54, 5011 (2021).
    https://doi.org/10.1021/acs.macromol.1c00550
  8. N. Sherck, K. Shen, M. Nguyen, B. Yoo, S. Köhler, J. C. Speros, K. T. Delaney, M. S. Shell, G. H. Fredrickson, “Molecularly Informed Field Theories from Bottom-up Coarse-Graining”, ACS Macro. Lett. 10, 576 (2021).
    https://doi.org/10.1021/acsmacrolett.1c00013
  9. J. I. Monroe, S. Jiao, R. J. Davis, D. Robinson-Brown, L. E. Katz, M. S. Shell, “Affinity of small-molecule solutes to hydrophobic, hydrophilic, and chemically patterned interfaces in aqueous solution”, PNAS, 118, e2020205118 (2021).
    https://doi.org/10.1073/pnas.2020205118
  10. R. Sujanani, M. R. Landsman, S. Jiao, J. D. Moon, M. S. Shell, D. F. Lawler, L. E. Katz, B. D. Freeman, “Designing solute-tailored selectivity in membranes: perspectives for water reuse and resource recovery”, ACS. Macro. Lett. 9, 1709 (2020).
    https://doi.org/10.1021/acsmacrolett.0c00710
  11. N. Sherck, T. Webber, D. Robinson Brown, T. Keller, M. Barry, A. DeStefano, S. Jiao, R. A. Segalman, G. H. Fredrickson,  M. S. Shell, S. Han, “End-to-End Distance Probability Distributions of Dilute Poly(ethylene oxide) in Aqueous Solution”, J. Am. Chem. Soc. 142, 19631 (2020).
    https://doi.org/10.1021/jacs.0c08709
  12. M. Giulini, R. Menichetti, M. S. Shell, R. Potestio, “An information-theory-based approach for optimal model reduction of biomolecules”, J. Chem. Theory Comput. 16, 6795 (2020).
    https://doi.org/10.1021/acs.jctc.0c00676
  13. K. Shen, N. Sherck, M. Nguyen, B. Yoo, S. Köhler, J. Speros, K. T. Delaney, G. H. Fredrickson, M. S. Shell, “Learning composition-transferable coarse-grained models: Designing external potential ensembles to maximize thermodynamic information”, J. Chem. Phys. 153, 154116 (2020).
    https://doi.org/10.1063/5.0022808
  14. J. I. Monroe, H. W. Hatch, N. A. Mahynski, M. S. Shell, V. K. Shen, “Extrapolation and interpolation strategies for efficiently estimating structural observables as a function of temperature and density”, J. Chem. Phys. 153, 144101 (2020). 
    https://doi.org/10.1063/5.0014282
  15. T. T. Foley, K. M. Kidder, M. S. Shell, W. G. Noid, “Exploring the landscape of model representations”, PNAS. 117, 24061 (2020).
    https://doi.org/10.1073/pnas.2000098117
  16. N. D. Petsev, L. G. Leal, M. S. Shell, “Universal gas adsorption mechanism for flat nanobubble morphologies”, Phys. Rev. Lett. 125, 146101 (2020)
    https://doi.org/10.1103/PhysRevLett.125.146101
  17. J. I. Monroe, M. Barry, A. DeStefano, P. A. Gokturk, S. Jiao, D. Robinson-Brown, T. Webber, E. J. Crumlin, S. Han, M. S. Shell, “Water structure and properties at hydrophilic and hydrophobic surfaces”, Annu. Rev. Chem. Biomol. Eng. 11, 523 (2020).
    https://doi.org/10.1146/annurev-chembioeng-120919-114657
  18. J. I. Monroe, M. S. Shell, “Decoding signatures of structure, bulk thermodynamics, and solvation in three-body angle distributions of rigid water models”, J. Chem. Phys. 151, 094501 (2019). https://doi.org/10.1063/1.5111545
  19. T. Sanyal, J. Mittal, M. S. Shell, “A hybrid, bottom-up, structurally accurate, G-like coarse-grained protein model”, J. Chem. Phys. 151, 044111 (2019).
    https://doi.org/10.1063/1.5108761
  20. D. Rosenberger, T. Sanyal, M. S. Shell, N. FA. van der Vegt, “Transferability of local density-assisted implicit solvation models for homogeneous fluid mixtures”, J. Chem. Theory Comput. 15, 2881 (2019)
    https://doi.org/10.1021/acs.jctc.8b01170
  21. N. D. Petsev, L. G. Leal, and M. S. Shell, “An Integrated Boundary Approach for Colloidal Suspensions Simulated Using Smoothed Dissipative Particle Dynamics,” Computers and Fluids 179, 672 (2019).
    https://doi.org/10.1016/j.compfluid.2018.11.025
  22. M. P. Howard, W. F. Reinhart, T. Sanyal, M. S. Shell, A. Nikoubashman, and A. Z. Panagiotopoulos, “Evaporation induced assembly of colloidal crystals,” J. Chem. Phys. 149, 209902 (2018). https://doi.org/10.1063/1.5043401
  23. J. I. Monroe and M. S. Shell, “Computational discovery of chemically patterned surfaces that effect unique hydration water dynamics,” Proceedings of the National Academy of Sciences USA 115, 8093 (2018).
    https://doi.org/10.1073/pnas.1807208115
  24. D. J. Smith, L. G. Leal, S. Mitragotri, and M. S. Shell, “Nanoparticle Transport Across Model Cellular Membranes: When Do Solubility-Diffusion Models Break Down?”, J. Physics D: Appl. Physics 51, 29400 (2018).
    https://doi.org/10.1088/1361-6463/aacac9
  25. T. Sanyal and M. S. Shell, “Transferable coarse-grained models of liquid-liquid equilibrium using local density potentials optimized with the relative entropy,” J. Phys. Chem. B 122, 5678 (2018).  https://doi.org/10.1021/acs.jpcb.7b12446
  26. A. M. Schrader, J. I. Monroe, R. Sheil, H. A. Dobbs, T. J. Keller, Y. Li, S. Jain, M. S. Shell, J. N. Israelachvili, S. Han, “Surface chemical heterogeneity modulates silica surface hydration,” Proceedings of the National Academy of Sciences USA 115, 2890 (2018). https://doi.org/10.1073/pnas.1722263115
  27. N. D. Petsev, L. G. Leal, and M. S. Shell, “Coupling Discrete and Continuum Concentration Particle Models for Multiscale and Hybrid Molecular-Continuum Simulations,” J. Chem. Phys 147, 234112 (2017).  – JCP Editor’s Choice for 2017
    https://doi.org/10.1063/1.5001703 
  28. D. J. Smith and M. S. Shell, “Can Simple Interaction Models Predict Sequence-Dependent Effects in Peptide Homodimerization?” J. Chem. Phys. 121, 5928 (2017). https://doi.org/10.1021/acs.jpcb.7b03186
  29. P. Stock, J. I. Monroe, T. Utzig, D. J. Smith, M. S. Shell, and M. Valtiner, “Unraveling hydrophobic interactions at the molecular scale using force spectroscopy and molecular dynamics simulations,” ACS Nano 11, 2586 (2017).
    https://doi.org/10.1021/acsnano.6b06360
  30. M. Robinson, J. I. Monroe, and M. S. Shell, “Are modern protein force fields and implicit solvation models additive?” J. Chem. Theory & Computation 12, 5631 (2016). https://doi.org/10.1021/acs.jctc.6b00788
  31. J. Jeon and M. S. Shell, “Peptide binding landscapes: specificity and homophilicity across sequence space in a lattice model,” Phys. Rev. E 94, 042405 (2016). https://doi.org/10.1103/PhysRevE.94.042405
  32. T. Sanyal and M. S. Shell, “Coarse-Grained Models Using Local-Density Potentials Optimized with the Relative Entropy: Application to Implicit Solvation,” J. Chem. Phys. 145, 034109 (2016). https://doi.org/10.1063/1.4958629
  33. M. S. Shell, “Coarse-graining with the relative entropy,” invited chapter in Advances in Chemical Physics, A. Dinner and S. A. Rice, editors, volume 161, 395-442(2016).  – Invited Review https://doi.org/10.1002/9781119290971.ch5
  34. N. D. Petsev, L. G. Leal, and M. S. Shell, “Multiscale Simulation of Ideal Mixtures Using Smoothed Dissipative Particle Dynamics,” J. Chem. Phys 144, 084155 (2016). https://doi.org/10.1063/1.4942499
  35. T. T. Foley, M. S. Shell, and W. G. Noid, “The impact of resolution upon entropy and information in coarse-grained models,” J. Chem. Phys. 143, 243104 (2015).
    https://doi.org/10.1063/1.4929836
  36. S. P. Carmichael and M. S. Shell, “Entropic (de)stabilization of surface-bound peptides conjugated with polymers,” J. Chem. Phys. 143, 243103 (2015).
    https://doi.org/10.1063/1.4929592
  37. B. Giera, N. Henson, E. M. Kober, M. S. Shell, and T. M. Squires, “Electric Double-Layer Structure in Primitive Model Electrolytes: Comparing Molecular Dynamics with Local-Density Approximations,” Langmuir 31, 3553 (2015).
    https://doi.org/10.1021/la5048936
  38. N. D. Petsev, L. G. Leal, and M. S. Shell, “Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics,” J. Chem. Phys 142, 044101 (2015). https://doi.org/10.1063/1.4905720
  39. J. Jeon and M. S. Shell, “Self-assembly of cyclo-diphenylalanine peptides in vacuum,” J. Phys. Chem. B 118, 6644 (2014).
    https://doi.org/10.1021/jp501503x
  40. A. Chaimovich and M. S. Shell, “Tetrahedrality and structural order for hydrophobic interactions in a coarse-grained water model ,” Phys. Rev. E 89, 22140 (2014). https://doi.org/10.1103/PhysRevE.89.022140
  41. A. Chaimovich and M. S. Shell, “The length-scale crossover of the hydrophobic interaction in a coarse-grained water model,” Phys. Rev. E 88, 052313 (2013). https://doi.org/10.1103/PhysRevE.88.052313
  42. S. P. Carmichael and M. S. Shell, “A simple mechanism for emergent chirality in achiral hard particle assembly,” J. Chem. Phys. 139, 164705 (2013).  ­– Editor’s Pick Article and Top Viewed Article https://doi.org/10.1063/1.4826466
  43. B. Giera, N. Henson, E. M. Kober, T. M. Squires, and M. S. Shell, “Model-free test of local-density mean-field behavior in electric double layers,” Phys. Rev. E 88, 011301 (2013). – Rapid Communication
    https://doi.org/10.1103/PhysRevE.88.011301
  44. C. C. Fu, P. M. Kulkarni, M. S. Shell, and L. G. Leal, “A test of systematic coarse-graining of molecular dynamics simulations: Transport Properties,” J. Phys. Chem. 139, 094107 (2013). https://doi.org/10.1063/1.4819472
  45. N. D. Petsev, M. S. Shell, and L. G. Leal, “Dynamic equilibrium explanation for nanobubbles’ unusual temperature and saturation dependence,” Phys. Rev. E 88, 010402 (2013). – Rapid Communication https://doi.org/10.1103/PhysRevE.88.010402
  46. P. M. Kulkarni, C.-C. Fu, M. S. Shell, and L. G. Leal, “Multiscale modeling with smoothed dissipative particle dynamics,” J. Chem. Phys. 138, 234105 (2013).
    https://doi.org/10.1063/1.4810754
  47. J. Jeon, C. Mills, and M. S. Shell, “Molecular insights into diphenylalanine nanotube assembly: all-atom simulations of oligomerization,” J. Phys. Chem. B 117, 3935 (2013). https://doi.org/10.1021/jp308280d
  48. C. C. Fu, P. M. Kulkarni, M. S. Shell, and L. G. Leal, “A Test of Systematic Coarse-Graining of Molecular Dynamics Simulations Thermodynamic Properties,” J. Chem. Phys. 137, 164106  (2012). https://doi.org/10.1063/1.4759463
  49. M. S. Shell, “Systematic coarse-graining of potential energy landscapes and dynamics in liquids,” J. Chem. Phys. 137, 084503 (2012).  –Named among 80 seminal papers in JCP’s 80th Anniversary Collection, 2013
    https://doi.org/10.1063/1.4746391
  50. J. Jeon and M. S. Shell, “Charge effects on the fibril forming peptide KTVIIE: a two-dimensional replica exchange simulation study,” Biophys. J. 102, 1952 (2012). https://dx.doi.org/10.1016%2Fj.bpj.2012.03.019
  51. S. Carmichael and M. S. Shell, “A New Multiscale Algorithm and its Application to Coarse-Grained Peptide Models for Self-Assembly,” J. Phys. Chem. B 116, 8383 (2012).  – Invited article in special issue on Multiscale Modeling
    https://doi.org/10.1021/jp2114994
  52. A. Pritchard-Bell and M. S. Shell, “Smoothing protein energy landscapes by integrating folding models with structure prediction,” Biophys. J. 101, 2251 (2011). https://dx.doi.org/10.1016%2Fj.bpj.2011.09.036
  53. A. Chaimovich and M. S. Shell, “Coarse-graining errors and optimization using a relative entropy framework,” J. Chem. Phys. 134, 094112 (2011). ­– Research Highlights Article in JCP https://doi.org/10.1063/1.3557038
  54. J. Gee and M. S. Shell, “Two-dimensional replica exchange approach to peptide-peptide interactions,” J. Chem. Phys 134, 064112 (2011).  ­– Research Highlights Article in JCP https://doi.org/10.1063/1.3551576
  55. E. Lin and M. S. Shell, “Can peptide folding simulations provide predictive information for aggregation propensity?”, J. Phys. Chem. B. 114, 11899  (2010).
    https://doi.org/10.1021/jp104114n
  56. M. U. Hammer, T. H. Anderson, A. Chaimovich, M. S. Shell, and J. Israelachvili, “The search for the hydrophobic force law,” Faraday Discussions 146, 299 (2010).
    https://doi.org/10.1039/B926184B
  57. M. S. Shell, “A replica-exchange approach to computing peptide conformational free energies,” Mol. Simulation 36, 505 (2010).  – Invited article
    https://doi.org/10.1080/08927021003720546
  58. A. Chaimovich and M. S. Shell, “Relative entropy as a universal metric for multiscale errors,” Phys. Rev. E. 81, 060104 (2010). ­– Rapid Communication
    https://doi.org/10.1103/PhysRevE.81.060104
  59. E. Lin and M. S. Shell, “Convergence and heterogeneity in peptide folding with replica exchange molecular dynamics,”J. Chem. Theory Comput. 5, 2062 (2009).
    https://doi.org/10.1021/ct900119n
  60. A. Chaimovich and M.S. Shell, “Anomalous waterlike behavior in spherically-symmetric water models  optimized with the relative entropy,” Phys. Chem. Chem. Phys 11, 1901 (2009).  ­– Invited article in special issue on Multiscale Modeling
    https://doi.org/10.1039/b818512c
  61. V. Voelz, M. S. Shell, and K. Dill, “Predicting peptide structures from native proteins in physical simulations of fragments”, PLoS Comput. Biol. 5, e1000218 (2009). https://dx.doi.org/10.1371%2Fjournal.pcbi.1000281
  62. G. A. Watkins, E. F. Jones, M. S. Shell, H. F. VanBrocklin, M. H. Pan, S. M. Hanrahan, J. J. Feng, J. He, N. E. Sounni, K. A. Dill, C. H. Contag, L. M. Coussens and B. L. Franc, “Development of an optimized activatable MMP-14 targeted SPECT imaging probe”, Bioorganic and Medicinal Chemistry 17, 653 (2009).
    https://doi.org/10.1016/j.bmc.2008.11.078
  63. M. S. Shell, S. B. Ozkan, V. Voelz, A. Wu, and K. Dill, “Blind test of physics-based prediction of protein structures”, Biophys. J. 96, 917 (2009).
    https://doi.org/10.1016/j.bpj.2008.11.009
  64. M. S. Shell, “The relative entropy is fundamental to multiscale and inverse thermodynamic problems,” J. Chem. Phys. 129, 144108 (2008).
    https://doi.org/10.1063/1.2992060
  65. M. S. Shell, R. Ritterson, and K. Dill, “A test on peptide folding of AMBER force fields with implicit solvation” J. Phys. Chem. B 112, 6878 (2008).
    https://dx.doi.org/10.1021%2Fjp800282x
  66. K. A. Dill, S. B. Ozkan, M. S. Shell, and T. R. Weikl, “The protein folding problem,” Ann. Rev. Biophys. Biomolec. Struct. 37, 289 (2008).
    https://doi.org/10.1146/annurev.biophys.37.092707.153558
  67. M. S. Shell, P. G. Debenedetti, and A. Z. Panagiotopoulos, “A conformal solution theory for the energy landscape and glass transition of mixtures,” Fluid Phase Equilibria 241, 147 (2006).
    https://doi.org/10.1016/j.fluid.2005.11.002
  68. M. S. Shell, P. G. Debenedetti, and A. Z. Panagiotopoulos, “Computational characterization of the sequence landscape in simple protein alphabets,” Proteins 62, 232 (2006).
    https://doi.org/10.1002/prot.20714
  69. M. S. Shell, P. G. Debenedetti, and F. H. Stillinger, “Dynamic heterogeneity and non-Gaussian diffusion in a model supercooled liquid,” J. Phys.: Condens. Matter 17, S4035 (2005).
    http://dx.doi.org/10.1088/0953-8984/17/49/002
  70. M. S. Shell, P. G. Debenedetti, and F. H. Stillinger, “Novel computational probes of diffusive motion,” J. Phys. Chem. B 109, 21329 (2005).
    https://doi.org/10.1021/jp0517145
  71. M. S. Shell, P. G. Debenedetti, and A. Z. Panagiotopoulos, “Flat histogram dynamics and optimization in density of states simulations of fluids,” J. Phys. Chem. B 108, 19748 (2004).
    http://dx.doi.org/10.1021/jp047677j
  72. M. S. Shell and P. G. Debenedetti, “Thermodynamics and the glass transition in model energy landscapes,”  Phys. Rev. E 69, 051102 (2004).
    https://doi.org/10.1103/PhysRevE.69.051102
  73. M. S. Shell, P. G. Debenedetti, and F. H. Stillinger, “Inherent structure view of self diffusion in liquids,”  Journal of Physical Chemistry B 108, 6772(2004).
    https://doi.org/10.1021/jp0372800
  74. M. S. Shell, P. G. Debenedetti, and A. Z. Panagiotopoulos, “Saddles in the energy landscape: extensivity and thermodynamic formalism,” Phys. Rev. Lett.92, 035506 (2004).
    https://doi.org/10.1103/PhysRevLett.92.035506
  75. P. G. Debenedetti, F. H. Stillinger, and M. S. Shell, “Model energy landscapes,” J. Phys. Chem. B107, 14434 (2003).
    https://doi.org/10.1021/jp030885b
  76. M. S. Shell, P. G. Debenedetti, and A. Z. Panagiotopoulos, “An improved Monte-Carlo method for direct calculation of the density of states,” J. Chem. Phys. 119, 9406 (2003).
    https://doi.org/10.1063/1.1615966
  77. F. Sciortino, E. La Nave, P. Tartaglia, M. S. Shell, and P. G. Debenedetti, “Test of non-equilibrium thermodynamics in glassy systems: the soft-sphere case,” Phys. Rev. E 68, 032103 (2003).
    https://doi.org/10.1103/PhysRevE.68.032103
  78. M. S. Shell, P. G. Debenedetti, F. Sciortino, and E. La Nave, “Energy landscapes, ideal glasses, and their equation of state,” J. Chem. Phys. 118, 8821 (2003).
    https://doi.org/10.1063/1.1566943
  79. M. S. Shell, P. G. Debenedetti, and A. Z. Panagiotopoulos, “Generalization of the Wang-Laudau method for off-lattice simulations,” Phys. Rev. E 66, 056703 (2002).
    https://doi.org/10.1103/PhysRevE.66.056703
  80. M. S. Shell, P. G. Debenedetti, and A. Z. Panagiotopoulos, “Molecular structural order and anomalies in liquid silica,” Phys. Rev. E 66, 011202 (2002). https://doi.org/10.1103/PhysRevE.66.011202

Book Chapters

  1. C. Chipot, M. S. Shell, and A. Pohorille, “Introduction,” invited chapter in Free energy calculations: theory and applications in chemistry and biology, Springer, 2006.
    https://www.springer.com/us/book/9783540384472
  2. M. S. Shell, A. Z. Panagiotopoulos, and A. Pohorille, “Methods based on probability distributions and histograms,” invited chapter in Free energy calculations: theory and applications in chemistry and biology, Springer, 2006.
    https://www.springer.com/us/book/9783540384472
  3. M. S. Shell and A. Z. Panagiotopoulos, “Methods for examining phase equilibria,” invited chapter in Free energy calculations: theory and applications in chemistry and biology, Springer, 2006.
    https://www.springer.com/us/book/9783540384472

Book

  1. M. S. Shell, Thermodynamics and Statistical Mechanics: An Integrated Approach, Cambridge, 2015.
    http://www.cambridge.org/9781107656789

Other Publications

  1. E. La Nave, F. Sciortino, P. Tartaglia, M. S. Shell, and P. G. Debenedetti, Reply to comment on “Test of nonequilibrium thermodynamics in glassy systems: the soft-sphere case,” Phys. Rev. E 71, 033102 (2005).
    https://doi.org/10.1103/PhysRevE.71.033102